Publicación:
Optimización de estrategias de trading con promedios móviles para futuros de petróleo mediante algoritmos genéticos

dc.contributor.authorAragón Bohorquez, Arbeyspa
dc.contributor.authorMejía Vega, Carlos Armando
dc.contributor.authorZapata Quimbayo, Carlos Andrés
dc.date.accessioned2019-05-13 00:00:00
dc.date.accessioned2022-09-08T13:41:24Z
dc.date.available2019-05-13 00:00:00
dc.date.available2022-09-08T13:41:24Z
dc.date.issued2019-05-13
dc.description.abstractLa implementación de estrategias de trading a través de herramientas computacionales e inteligencia artificial, entre ellas las redes neuronales artificiales (RNA) y los algoritmos genéticos (AG), ha presentado avances importantes en los últimos años. En este trabajo se implementó un AG para optimizar una estrategia de trading basada en dos promedios móviles en el mercado intradiario de futuros de petróleo crudo WTI. La función objetivo es el retorno global de la inversión. En el documento se presenta la metodología y el diseño de esta estrategia de inversión con resultados consistentes incluso fuera de muestra.spa
dc.description.abstractThe implementation of trading strategies through computational tools and artificial intelligence, such as artificial neural networks (ANN) and genetic algorithms (AG), have presented important advances in the last years, In this paper it is implemented a ag for the optimization of a trading strategy with two moving averages in the inter-day market of crude oil futures. The objective function is the global return of the investment. The document presents the methodology and the design of this investment strategy with consistent results even with out-of-sample data.eng
dc.format.mimetypeapplication/pdfspa
dc.format.mimetypetext/htmlspa
dc.identifier.doi10.18601/17941113.n15.05
dc.identifier.eissn2346-2140
dc.identifier.issn1794-1113
dc.identifier.urihttps://bdigital.uexternado.edu.co/handle/001/7768
dc.identifier.urlhttps://doi.org/10.18601/17941113.n15.05
dc.language.isospaspa
dc.publisherFacultad de Finanzas, Gobierno y Relaciones Internacionalesspa
dc.relation.bitstreamhttps://revistas.uexternado.edu.co/index.php/odeon/article/download/5951/7676
dc.relation.bitstreamhttps://revistas.uexternado.edu.co/index.php/odeon/article/download/5951/7888
dc.relation.citationeditionNúm. 15 , Año 2018 : Julio-Diciembrespa
dc.relation.citationendpage160
dc.relation.citationissue15spa
dc.relation.citationstartpage139
dc.relation.ispartofjournalOdeonspa
dc.relation.referencesAlexander, S. (1964). Price movements in speculative markets: trends or random walks. En P. Cootner (ed.), The Random Character of Stock Market Prices (vol. 2), Cambridge: MIT Press.spa
dc.relation.referencesAllen, F. y Karjalainen, R. (1999). Using genetic algorithms to find technical trading rules. Journal of Financial Economics, 51(2), 245-271.spa
dc.relation.referencesAyadi, O., Williams, J. y Hyman, L. (2009). Fractional dynamic behavior in forcados oil price series: An application of detrended fluctuation analysis. Energy for Sustainable Development, 13(1), 11-17.spa
dc.relation.referencesBoboc, I. y Dinica, M. (2013). An algorithm for testing the efficient market hypothesis. PLoS ONE, 8(11), e78177.spa
dc.relation.referencesBrooks, J. (2006). Mastering Technical Analysis. Using the Tools of Technical Analysis for Profitable Trading. New York: McGraw-Hill.spa
dc.relation.referencesCheng, C., Chen, T. y Wei, L. (2010). A hybrid model based on rough sets theory and genetic algorithms for stock price forecasting. Information Sciences, 180(9), 1610-1629.spa
dc.relation.referencesConrad, J. y Kaul, G. (1998). An anatomy of trading strategies. The Review of Financial Studies, 11(3), 489-519.spa
dc.relation.referencesCuaresma, J., Hlouskova, J., Kossmeier, S. y Obersteiner, M. (2004). Forecasting electricity spot-prices using linear univariate time-series models. Applied Energy, 77(1), 87-106.spa
dc.relation.referencesDavey, A. (2010). Deregulation of wholesale petrol prices: What happened to capital city petrol prices? Australian Journal of Agricultural and Resource Economics, 54(1), 81-98.spa
dc.relation.referencesDe Bondt, W. y Thaler, R. (1985). Does the stock market overreact? The Journal of Finance, 40(3), 793-805.spa
dc.relation.referencesDeng, S., Yoshiyama, K., Mitsubuchi, T. y Sakurai, A. (2015). Hybrid method of multiple kernel learning and genetic algorithm for forecasting short-term foreign exchange rates. Computational Economics, 45(1), 49-89.spa
dc.relation.referencesDong, H. y Huang, W. (2014). Prediction of geothermal resources by means of wavelet neural network optimized by genetic algorithm. Res. Ind, 16(3), 101-106.spa
dc.relation.referencesEsfahanipour, A. y Mousavi, S. (2011). A genetic programming model to generate riskadjusted technical trading rules in stock markets. Expert Systems with Applications, 38(1), 8438-8445.spa
dc.relation.referencesFama, E. (1970). Efficient capital markets: A review of theory and empirical work. Journal of Finance, 25(2), 383-417.spa
dc.relation.referencesFama, E. y Blume, M. (1966). Filter rules and stock market trading. Security prices: A supplement. Journal of Business, 39(1), 226-241.spa
dc.relation.referencesFama, E. y French, K. (1992). The cross-section of expected stock returns. Journal of Finance, 47(2), 427-465.spa
dc.relation.referencesGlabadanidis, P. (2015). Market Timing and Moving Averages: An Empirical Analysis of Performance in Asset Allocation. New York: Palgrave MacMillan.spa
dc.relation.referencesHolland, J. (1975). Adaptation in Natural and Artificial Systems: An Introductory Analysis with Application to Biology. Ann Arbor: University of Michigan Press.spa
dc.relation.referencesKabundi, A. y Mwamba, J. (2012). Appying a genetic algorithm to international diversification of equity portfolios: A South African investor perspective. South African Journal of Economics, 80(1), 91-105.spa
dc.relation.referencesLi, J. y Tsang, E. (1999). Improving Technical Analysis Predictions: An Application of Genetic Programming. En flairs Conference, 108-112.spa
dc.relation.referencesLin, L., Cao, L., Wang, J. y Zhang, C. (2004). The applications of genetic algorithms in stock market data mining optimisations. En Conference on Data Mining, Text Mining and Their Business Application. Wessex Institute of Technology Press, 273-280.spa
dc.relation.referencesLiu, X., An, H. y Wang, L. (2015). Performance of generated moving average strategies in natural gas futures prices at different time scales. Portfolios: A South African investor perspective. Journal of Natural Gas Science and Engineering, 24(1), 337-345.spa
dc.relation.referencesLo, A. y MacKinlay, A. (1990). An econometric analysis of nonsynchronous trading. Journal of Econometrics, 45(1), 181-211.spa
dc.relation.referencesMatilla, M. y Argello, C. (2005). A hybrid approach based on neural networks and genetic algorithms to the study of profitability in the spanish stock market. Applied Economics Letters, 12(5) 303-308.spa
dc.relation.referencesMetghalchi, M., Marcucci, J. y Chang, Y. (2012). Are moving average trading rules profitable? Evidence from the European stock markets. Applied Economics, 162(15), 1539-1559.spa
dc.relation.referencesMuñoz, M., Corchero, C. y Heredia, F. (2013). Improving electricity market price forecasting with factor models for the optimal generation bid. International Statistical Review, 81(2), 289-306.spa
dc.relation.referencesMurphy, J. (1999). Technical analysis of the financial markets. New York: Penguin Group.spa
dc.relation.referencesPotvin, J., Sorianoa, P. y Valléeb, M. (2004). Generating trading rules on the stock markets with genetic programming. Computers & Operations Research, 44(12), 1033-1047.spa
dc.relation.referencesQu, H., y Li, X. (2014). Building technical trading system with genetic programming: A new method to test the efficiency of Chinese stock markets. Computational Economics, 43(3), 301-311.spa
dc.relation.referencesRoberts, M. (2005). Technical analysis and genetic programming: Constructing and testing a commodity portfolio. The Journal of Futures Markets, 25(7), 643-660.spa
dc.relation.referencesRoutledge, B. (2001). Genetic algorithm learning to choose and use information. Macroeconomic dynamics, 5(2), 303-325.spa
dc.relation.referencesStraßburg, J., González, C. y Alexandrov, V. (2012). Parallel genetic algorithms for stock market trading rules. Procedia Computer Science, 9(1), 1306-1313.spa
dc.relation.referencesTrippi, R. y Turban, E. (1992). Neural Networks in Finance and Investing: Using Artificial Intelligence to Improve Real World Performance. New York: McGrawHill.spa
dc.relation.referencesTsang, R. y Lajbcygier, P. (2002). Optimizing technical trading strategies with split search genetic algorithms. En Chen (ed.), Evolutionary Computation in Economics and Finance (pp. 333-358), Berlin: Springer-Verlag.spa
dc.relation.referencesWang, C., Wu, C. y Tzang, S. (2012). Implementing option pricing models when asset returns follow an autoregressive moving average process. International Review of Economics & Finance, 24, 8-25.spa
dc.relation.referencesWang, L., An, H., Xia, X., Liu, X., Sun, X., Huang, X. (2014). Generating moving average trading rules on the oil futures market with genetic algorithms. Mathematical Problems in Engineering, 1, 1-10.spa
dc.relation.referencesWang, L., An, H., Xia, X., Liu, X., Sun, X. y Huang, X. (2016). Selecting dyna- mic moving average trading rules in the crude oil futures market using a genetic approach. Applied Energy, 162(15), 1608-1618.spa
dc.relation.referencesWiesinger, J., Sornette, D. y Satinover, J. (2013). Reverse engineering financial markets with majority and minority games using genetic algorithms. Computational Economics, 41(4), 475-492.spa
dc.rightsArbey Aragón Bohorquez, Carlos Armando Mejía Vega, Carlos Andres Zapata Quimbayo - 2019spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa
dc.rights.urihttps://creativecommons.org/licenses/by-nc-sa/4.0/spa
dc.sourcehttps://revistas.uexternado.edu.co/index.php/odeon/article/view/5951spa
dc.subjectgenetic algorithms;eng
dc.subjectmoving average;eng
dc.subjectoil futureseng
dc.subjectalgoritmos genéticos;spa
dc.subjectpromedios móviles;spa
dc.subjectfuturos de petróleospa
dc.titleOptimización de estrategias de trading con promedios móviles para futuros de petróleo mediante algoritmos genéticosspa
dc.title.translatedOptimization of trading strategies with moving averages for oil futures using genetic algorithmseng
dc.typeArtículo de revistaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.coarversionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.localJournal articleeng
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTREFspa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
dspace.entity.typePublication
person.identifier.cvlachttps://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000027210
person.identifier.cvlachttps://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001415049
person.identifier.gsidhttps://scholar.google.com/citations?user=AwMCJRkAAAAJ&hl=es
person.identifier.gsidhttps://scholar.google.com/citations?user=HRLzkWMAAAAJ&hl=es
person.identifier.orcid0000-0002-0863-3342
person.identifier.orcid0000-0003-3337-0182
relation.isAuthorOfPublication7873fed6-f7f0-4942-b381-72052a46571f
relation.isAuthorOfPublication45febcec-2de6-48ab-8e77-0efc1a2af467
relation.isAuthorOfPublication.latestForDiscovery7873fed6-f7f0-4942-b381-72052a46571f
Archivos